The generator matrix

 1  0  1  1  1  1 X+6  1  1 2X  1  1  1  0  1  1 2X+6  1  6  1  1  1  X  1  1  1  1  1  1  1  1  1  1  1  1  3  1  1  1  1  1 2X  1 X+6  1 X+3  1  1  1  1  1 2X  1  1  1  1  1  1  1  1 X+6 2X+3  1  1  1  1  1  1 2X+3
 0  1  1  8 X+6 X+5  1 2X 2X+8  1 2X+7 X+1  0  1 2X 2X+1  1  5  1 X+8 X+7  1  1 X+6  5 2X+5 X+8 2X+7 2X+5  6  7  8  0 2X+8 X+1  1 2X+5 X+1  1 2X+3 2X  1 2X  1 X+6  1  5  1 X+8 X+7 2X+3  1  X 2X+3  X  7  8 2X+3  0 X+2  1  1 X+3  5  7 2X  5  X  1
 0  0 2X  0  6  6  6  0  6  6 2X+6 2X 2X+3 2X 2X+3  X X+3 X+3 X+6 X+6  X X+3 X+6 2X+6 X+6 X+6 X+3  6 X+6  X 2X 2X+3 2X 2X+6  6 2X+6  0 2X+6 X+6  X  X 2X+6 2X  3 X+3  X  0  3 2X+3  0 X+3  X  0  3  6 X+6 2X+3  X  6  6 X+3 2X+3 2X+3 2X+6 2X+6  3 2X+3 X+6 2X
 0  0  0  3  3  0  6  6  6  3  6  3  6  3  0  6  0  0  3  3  0  3  6  3  6  3  0  3  6  6  3  0  0  3  6  0  3  6  6  6  0  6  6  3  6  0  0  0  3  3  0  3  6  3  0  0  6  3  3  6  0  0  0  0  3  6  3  0  6

generates a code of length 69 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 130.

Homogenous weight enumerator: w(x)=1x^0+264x^130+216x^131+930x^132+816x^133+1656x^134+1808x^135+1092x^136+2052x^137+2424x^138+1026x^139+2322x^140+2154x^141+648x^142+936x^143+586x^144+336x^145+108x^146+96x^147+90x^148+12x^150+48x^151+4x^153+48x^154+6x^157+4x^162

The gray image is a code over GF(3) with n=621, k=9 and d=390.
This code was found by Heurico 1.16 in 1.3 seconds.